Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 791
Filtrar
1.
Environ Pollut ; 351: 124084, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697245

RESUMEN

Due to the potential impacts of microplastics (MPs) and nanoplastics (NPs) on algal growth and thereby affect the climate-relevant substances, dimethylsulfoniopropionate (DMSP) and dimethyl sulfide (DMS), we studied the polystyrene (PS) MPs and NPs of 1 µm and 80 nm impacts on the growth, chlorophyll content, reactive oxygen species (ROS), antioxidant enzyme activity, and DMS/DMSP production in Emiliania huxleyi. E. huxleyi is a prominent oceanic alga that plays a key role in DMS and DMSP production. The results revealed that high concentrations of MPs and NPs inhibited the growth, carotenoid (Car), and Chl a concentrations of E. huxleyi. However, short-time exposure to low concentrations of PS MPs and NPs stimulated the growth of E. huxleyi. Furthermore, high concentrations of MPs and NPs resulted in an increase in the superoxide anion radical (O2.-) production rate and a decrease in the malondialdehyde (MDA) content compared with the low concentrations. Exposure to MPs and NPs at 5 mg L-1 induced superoxide dismutase (SOD) activity as a response to scavenging ROS. High concentrations of MPs and NPs significantly inhibited the production of DMSP and DMS. The findings of this study support the potential ecotoxicological impacts of MPs and NPs on algal growth, antioxidant system, and dimethylated sulfur compounds production, which maybe potentially impact the global climate.

2.
Sci Total Environ ; 932: 173035, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38719031

RESUMEN

Sea-to-air emissions of very short-lived brominated halocarbons (VSLBrHs) are known to contribute to 30 % of stratospheric and tropospheric ozone depletion. However, empirical data on their occurrence in open ocean are scarce, which makes it difficult to estimate the significant contribution of open ocean releases to the global budget of halocarbons. This study was conducted in 2022 to explore the spatial variations of VSLBrHs and their controlling factors in the western tropical Pacific Ocean (WTPO). The findings highlighted that high biological productivity and the resulting dissolved organic matter (DOM) as well as upwelling dynamics significantly influenced the distribution and production of VSLBrHs in seawater, with atmospheric levels primarily governed by oceanic emissions. Based on the simultaneous observation of seawater and atmospheric concentrations, the mean sea-to-air fluxes of CH2Br2, CHBr3, CHBrCl2, and CHBr2Cl were estimated to be 1.01, 6.65, 9.31, and 7.25 nmol m-2 d-1, respectively. Sea-to-air fluxes of these gases in the upwelling regions were 9.0, 4.6, 2.9, and 6.8 times those in the non-upwelling regions, respectively. Additionally, in-situ incubation experiments revealed that the enzymatic mediated biosynthesis pathways of VSLBrHs were enhanced under temperature and light-induced stress and in waters rich in humus-like substances. Therefore, we tentatively concluded that abundant photothermal conditions and the existence of upwelling in the WTPO made it a potential hotspot for the emission of VSLBrHs. This study offers critical insights into the environmental dynamics of VSLBrHs emissions and underscores the importance of regional oceanic conditions in influencing atmospheric greenhouse gas compositions.

3.
Acta Pharmacol Sin ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719954

RESUMEN

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

4.
Microbes Infect ; : 105350, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723999

RESUMEN

The widespread transmission of SARS-CoV-2 in humans poses a serious threat to public health security, and a growing number of studies have discovered that SARS-CoV-2 infection in wildlife and mutate over time. This article mainly reports the first systematic review and meta-analysis of the prevalence of SARS-CoV-2 in wildlife. The pooled prevalence of the 29 included articles was calculated by us using a random effects model (22.9%) with a high heterogeneity (I2 =98.7%, p=0.00). Subgroup analysis and univariate regression analysis found potential risk factors contributing to heterogeneity were country, wildlife species, sample type, longitude, and precipitation. In addition, the prevalence of SARS-CoV-2 in wildlife increased gradually over time. Consequently, it is necessary to comprehensively analyze the risk factors of SARS-CoV-2 infection in wildlife and develop effective control policies, as well as to monitor the mutation of SARS-CoV-2 in wildlife at all times to reduce the risk of SARS-CoV-2 transmission among different species.

5.
Angew Chem Int Ed Engl ; : e202401235, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623716

RESUMEN

Halide methyltransferases (HMTs) provide an effective way to regenerate S-adenosyl methionine (SAM) from S-adenosyl homocysteine and reactive electrophiles, such as methyl iodide (MeI) and methyl toluene sulfonate (MeOTs). As compared with MeI, the cost-effective unnatural substrate MeOTs can be accessed directly from cheap and abundant alcohols, but shows only limited reactivity in SAM production. In this study, we developed a dynamic cross-correlation network analysis (DCCNA) strategy for quickly identifying hot spots influencing the catalytic efficiency of the enzyme, and applied it to the evolution of HMT from Paraburkholderia xenovorans. Finally, the optimal mutant, M4 (V55T/C125S/L127T/L129P), exhibited remarkable improvement, with a specific activity of 4.08 U/mg towards MeOTs, representing an 82-fold increase as compared to the wild-type (WT) enzyme. Notably, M4 also demonstrated a positive impact on the catalytic ability with other methyl donors. The structural mechanism behind the enhanced enzyme activity was uncovered by molecular dynamics simulations. Our work not only contributes a promising biocatalyst for the regeneration of SAM, but also offers a strategy for efficient enzyme engineering.

6.
Cell Biochem Funct ; 42(4): e4023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38666547

RESUMEN

DNA quality is of paramount importance for molecular biology research. This study aimed to assess the DNA extracted from residual blood clots after serological testing, focusing on the impact of blood clot segments, extraction kits, temporary storage durations (TSDs), and thawing methods on DNA quality. We divided the residual blood clot column (BCC) from healthy donors into three segments and utilized two different extraction kits. The BCCs were subjected to four TSDs at 4°C (7 days, 10 days, 1 month, and 2 months) and three thawing methods (4°C, room temperature, and 37°C). We found that the TIANamp Blood Clot DNA Kit yielded consistently high-quality DNA from each segment with stable A260/280 and A260/230 ratios. The DNA yield showed a strong positive correlation with leukocyte concentration, and a satisfactory median DNA yield of 28.79 µg/g BCC was obtained across all segments. DNA integrity, as measured by the DNA integrity number and DNA fragment peak size, decreased with increasing TSD at 4°C, with a notable decrease after 10 days of storage. Thawing at 37°C resulted in the lowest DNA fragment peak size. In conclusion, BCC could be an ideal DNA source with satisfactory yield and purity. A prolonged TSD at 4°C leads to an obvious decrease in DNA integrity, and thawing the frozen BCC at 37°C decreases DNA fragment sizes. To maintain DNA integrity, BCCs should be cryopreserved as soon as possible after short TSDs at 4°C and thawed at 4°C.


Asunto(s)
ADN , Humanos , ADN/aislamiento & purificación , ADN/análisis , Pruebas Serológicas , Coagulación Sanguínea
7.
Ital J Pediatr ; 50(1): 63, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589916

RESUMEN

BACKGROUND: This study aims to thoroughly study the connection between congenital heart disease (CHD) and neurodevelopmental disorders (NDDs) through observational and Mendelian randomization (MR) designs. METHODS: This observational study uses data from the National Survey of Children's Health (2020-2021). Multivariable logistic regression and propensity score matching (PSM) were performed to analyze the association. PSM was used to minimize bias for covariates such as age, race, gender, maternal age, birth weight, concussion or brain injury, preterm birth, cerebral palsy, Down syndrome, and other inherited conditions. In MR analyses, inverse variance-weighted measures, weighted median, and MR-Egger were employed to calculate causal effects. RESULTS: A total of 85,314 children aged 0-17 were analyzed in this study. In regression analysis, CHD (p = 0.04), the current heart condition (p = 0.03), and the severity of current heart condition (p < 0.05) had a suggestive association with speech or language disorders. The severity of current heart condition (p = 0.08) has a potential statistically significant association with attention deficit hyperactivity disorder(ADHD). In PSM samples, ADHD(p = 0.003), intellectual disability(p = 0.012), and speech or language disorders(p < 0.001) were all significantly associated with CHD. The severity of current heart condition (p < 0.001) also had a significant association with autism. MR analysis did not find causality between genetically proxied congenital cardiac malformations and the risk of NDDs. CONCLUSIONS: Our study shows that children with CHD have an increased risk of developing NDDs. Heart conditions currently and severity of current heart conditions were also significantly associated with these NDDs. In the future, we need to try more methods to clarify the causal relationship between CHD and NDDs.


Asunto(s)
Cardiopatías Congénitas , Trastornos del Lenguaje , Trastornos del Neurodesarrollo , Nacimiento Prematuro , Niño , Femenino , Humanos , Recién Nacido , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/genética , Análisis de la Aleatorización Mendeliana , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/genética , Lactante , Preescolar , Adolescente , Masculino
8.
Mar Environ Res ; 197: 106481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593647

RESUMEN

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Asunto(s)
Agua de Mar , Compuestos de Sulfonio , Animales , Agua de Mar/química , Azufre/metabolismo , Compuestos de Sulfonio/química , Compuestos de Sulfonio/metabolismo , Sulfuros/metabolismo , Bacterias/metabolismo , Fitoplancton , China , Zooplancton/metabolismo
9.
Mar Environ Res ; 198: 106496, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38640691

RESUMEN

The carbonate chemistry in river-dominated marginal seas is highly heterogeneous, and there is ongoing debate regarding the definition of atmospheric CO2 source or sink. On this basis, we investigated the carbonate chemistry and air-sea CO2 fluxes in a hotspot estuarine area: the Changjiang Estuary during winter and summer. The spatial characteristics of the carbonate system were influenced by water mixing of three end-members in winter, including the Changjiang freshwater with low total alkalinity (TA) concentration, the less saline Yellow Sea Surface Water with high TA, and the saline East China Sea (ECS) offshore water with moderate TA. While in summer with increased river discharge, the carbonate system was regulated by simplified two end-member mixing between the Changjiang freshwater and the ECS offshore water. By performing the end-member mixing model on DIC variations in the river plume region, significant biological addition of DIC was found in winter with an estimation of -120 ± 113 µmol kg-1 caused by wintertime organic matter remineralization from terrestrial source. While this biological addition of DIC shifted to DIC removal due to biological production in summer supported by the increased nutrient loading from Changjiang River. The pCO2 dynamics in the river plume and the ECS offshore were both subjected to physical mixing of freshwater and seawater, whether in winter and summer. In the inner estuary without horizontal mixing, the pCO2 dynamics were mainly influenced by biological uptake in winter and temperature in summer. The inner estuary, the river plume, and the ECS offshore were sources of atmospheric CO2, with their contributions varying seasonally. The Changjiang runoff enhanced the inner estuary's role as a CO2 source in summer, while intensive biological uptake reduced the river plume's contribution.

10.
J Org Chem ; 89(9): 6494-6505, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38634729

RESUMEN

Herein, a novel and practical methodology for the photoinduced decarboxylative difluoroalkylation and perfluoroalkylation of α-fluoroacrylic acids is reported. A wide range of α-fluoroacrylic acids can be used as applicable feedstocks, allowing for rapid access to structurally important difluoroalkylated and polyfluoroalkylated monofluoroalkenes with high Z-stereoselectivity under mild conditions. The protocol demonstrates excellent functional group compatibility and provides a platform for modifying complex biologically active molecules.

11.
ACS Appl Mater Interfaces ; 16(13): 16290-16299, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38520333

RESUMEN

With the development and application of thermoelectric (TE) devices, it requires not only high-performance of TE materials but also high mechanical properties. Here, we report a medium-temperature liquid material, AgCuTe, with high mechanical properties. The results demonstrate that AgCuTe possesses a multiphase structure characterized by abundant grain boundaries, resulting in reduced lattice thermal conductivity and inherently high mechanical strength. Furthermore, nano-SiC was alloyed into the AgCuTe material to further improve its mechanical and TE properties. Nano-SiC exhibited a button-like distribution within the grain boundaries, introducing a pinning effect that significantly elevated the Vickers hardness of the samples. Additionally, nano-SiC induced strong lattice distortion energy in the vicinity, which promotes Ag/Cu ions to escape from the lattice and enhances the liquid-like behavior of Ag/Cu ions. Finally, these enhancements led to a 21% improvement in the mechanical properties and a 40% improvement in the TE properties for AgCuTe. Notably, AgCuTe achieved its peak TE performance, with a latest peak ZT value of 1.32 at 723 K. This research expands the potential applications of AgCuTe.

12.
ACS Appl Mater Interfaces ; 16(10): 12332-12338, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426453

RESUMEN

Organic dye-based agents with near-infrared (NIR)-II absorption have great potential for cancer theranostics because of the deeper tissue penetration and good biocompatibility. However, proper design is required to develop NIR-II-absorbing dyes with good optical properties. We proposed to construct chalcogen atom-modulated croconaine for NIR-II light-triggered photothermal theranostics. By introducing different chalcogen atoms (O, S, Se, or Te) into the structure of croconaine, the light absorption of croconaine can be precisely regulated from the NIR-I to the NIR-II range due to the heavy-atom effect. Especially, Te-substituted croconaine (CRTe) and its nanoformulations exhibit superior NIR-II responsiveness, a high photothermal conversion efficiency (70.6%), and good photostability. With their favorable tumor accumulation, CRTe-NPs from tumor regions can be visualized by NIR-II optoacoustic systems with high resolution and high contrast; meanwhile, their superior photothermal performance also contributes to efficient cell killing and tumor elimination upon 1064 nm laser irradiation. Therefore, this work provides an efficient strategy for the molecular design of NIR-II organic photothermal agents.


Asunto(s)
Calcógenos , Nanopartículas , Neoplasias , Humanos , Nanomedicina Teranóstica , Neoplasias/tratamiento farmacológico , Colorantes/química , Calcógenos/farmacología , Nanopartículas/química , Fototerapia , Línea Celular Tumoral
13.
Int Immunopharmacol ; 130: 111710, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38394888

RESUMEN

Influenza virus is a kind of virus that poses several hazards of animal and human health. Therefore, it is important to develop an effective vaccine to prevent influenza. To this end we successfully packaged recombinant adenovirus rAd-NP-M2e-GFP expressing multiple copies of influenza virus conserved antigens NP and M2e and packaged empty vector adenovirus rAd-GFP. The effect of rAd-NP-M2e-GFP on the activation of dendritic cell (DC) in vitro and in vivo was detected by intranasal immunization. The results showed that rAd-NP-M2e-GFP promoted the activation of DC in vitro and in vivo. After the primary immunization and booster immunization of mice through the nasal immune way, the results showed that rAd-NP-M2e-GFP induced enhanced local mucosal-specific T cell responses, increased the content of SIgA in broncho alveolar lavage fluids (BALF) and triggered the differentiation of B cells in the germinal center. It is proved that rAd-NP-M2e-GFP can significantly elicit mucosal immunity and systemic immune response. In addition, rAd-NP-M2e-GFP could effectively protect mice after H1N1 influenza virus challenge. To lay the foundation and provide reference for further development of influenza virus mucosal vaccine in the future.


Asunto(s)
Vacunas contra el Adenovirus , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Adenoviridae/genética , Inmunización , Vacunas Sintéticas , Inmunidad Mucosa , Ratones Endogámicos BALB C , Anticuerpos Antivirales
14.
Mar Pollut Bull ; 200: 116095, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325205

RESUMEN

An integrated observation of NOx that included coastal cities and oceanic cruises covering the Qingdao coastal waters sites (QDCW) and the Yellow Sea and East China Sea sites (YECS) was conducted in spring. The average concentrations of the coastal cities, the QDCW, and the YECS were 5.4 ± 4.1, 4.2 ± 3.5, and 2.9 ± 6.8 ppb for NO while 18.5 ± 7.2, 9.4 ± 5.2, and 4.9 ± 6.4 ppb for NO2, depicting lowest levels in the open seas. Atmospheric NO and NO2 showed similar spatial variations over the seas, the stations where the air masses originated from land or nearshore regions showed higher levels, but the decisive influencing factors were not the same in the different study areas. The calculated NOx flux value in the YECS (-8.7 × 10-17 mol N cm-2) indicated that the sea surface was a net sink of atmospheric NOx.


Asunto(s)
Contaminantes Atmosféricos , Agua de Mar , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno , Monitoreo del Ambiente , Océanos y Mares , Óxidos de Nitrógeno , China
15.
Environ Sci Technol ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38344765

RESUMEN

Volatile sulfur compounds, such as dimethyl sulfide (DMS), carbonyl sulfide (OCS), and carbon disulfide (CS2), have significant implications for both atmospheric chemistry and climate change. Despite the crucial role of oceans in regulating their atmospheric budgets, our comprehension of their cycles in seawater remains insufficient. To address this gap, a field investigation was conducted in the western North Pacific to clarify the sources, sinks, and biogeochemical controls of these gases in two different marine environments, including relatively eutrophic Kuroshio-Oyashio extension (KOE) and oligotrophic North Pacific subtropical gyre. Our findings revealed higher concentrations of these gases in both seawater and the atmosphere in the KOE compared to the subtropical gyre. In the KOE, nutrient-rich upwelling stimulated rapid DMS biological production, while reduced seawater temperatures hindered the removal of OCS and CS2, leading to their accumulation. Furthermore, we have quantitatively evaluated the relative contribution of each pathway to the source and sink of DMS, OCS, and CS2 within the mixed layer and identified vertical exchange as a potential sink in most cases, transporting substantial amounts of these gases from the mixed layer to deeper waters. This research advances our understanding of sulfur gas source-sink dynamics in seawater, contributing to the assessment of their marine emissions and atmospheric budgets.

16.
Environ Res ; 251(Pt 1): 118579, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38423497

RESUMEN

Halogenated organic contaminants, such as chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs), are some of the most important emerging environmental pollutants. However, empirical data on Cl/Br-PAHs in estuarine and marine ecosystems are limited, rendering assessments of Cl/Br-PAH contamination in estuarine and offshore environments uncertain. Here the occurrence, sources, and ecological risks of 7 Cl-PAHs and 18 Br-PAHs were determined in surface sediments of the Yangtze River Estuary (YRE), a highly urbanized and industrialized area, and its adjacent marine area. The concentrations of Cl-PAHs ranged from 4.50 to 18.38 ng g-1 (average 7.19 ng g-1), while those of Br-PAHs ranged from 4.80 to 61.18 ng g-1 (average 14.11 ng g-1). The dominant Cl-PAH and Br-PAH in surface sediment were 9-chlorofluorene (17.79%) and 9-bromofluorene (58.49%), respectively. The distributions and compositions of Cl/Br-PAHs in the surface sediments varied considerably due to complex hydrodynamic and depositional conditions in the YRE and its adjacent marine area, as well as differences in physicochemical properties of different Cl/Br-PAHs. Positive matrix factorization revealed that the primary sources of Cl/Br-PAHs in the study area were e-waste dismantling (33.6%), waste incineration (23.2%), and metal smelting (11.0%). According to the risk quotient, the Cl/Br-PAHs in sediments posed no toxic risk to aquatic organisms.

17.
Microbiome ; 12(1): 20, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317217

RESUMEN

BACKGROUND: The gut microbiota is a critical factor in the regulation of host health, but the relationship between the differential resistance of hosts to pathogens and the interaction of gut microbes is not yet clear. Herein, we investigated the potential correlation between the gut microbiota of piglets and their disease resistance using single-cell transcriptomics, 16S amplicon sequencing, metagenomics, and untargeted metabolomics. RESULTS: Porcine epidemic diarrhea virus (PEDV) infection leads to significant changes in the gut microbiota of piglets. Notably, Landrace pigs lose their resistance quickly after being infected with PEDV, but transplanting the fecal microbiota of Min pigs to Landrace pigs alleviated the infection status. Macrogenomic and animal protection models identified Lactobacillus reuteri and Lactobacillus amylovorus in the gut microbiota as playing an anti-infective role. Moreover, metabolomic screening of the secondary bile acids' deoxycholic acid (DCA) and lithocholic acid (LCA) correlated significantly with Lactobacillus reuteri and Lactobacillus amylovorus, but only LCA exerted a protective function in the animal model. In addition, LCA supplementation altered the distribution of intestinal T-cell populations and resulted in significantly enriched CD8+ CTLs, and in vivo and in vitro experiments showed that LCA increased SLA-I expression in porcine intestinal epithelial cells via FXR receptors, thereby recruiting CD8+ CTLs to exert antiviral effects. CONCLUSIONS: Overall, our findings indicate that the diversity of gut microbiota influences the development of the disease, and manipulating Lactobacillus reuteri and Lactobacillus amylovorus, as well as LCA, represents a promising strategy to improve PEDV infection in piglets. Video Abstract.


Asunto(s)
Infecciones por Coronavirus , Microbioma Gastrointestinal , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Porcinos , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Enfermedades de los Porcinos/prevención & control , Resistencia a la Enfermedad
18.
J Hazard Mater ; 466: 133609, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310846

RESUMEN

The environmental risks resulting from the increasing antivirals in water are largely unknown, especially in eutrophic lakes, where the complex interactions between algae and drugs would alter hazards. Herein, the environmental risks of the antiviral drug arbidol towards the growth and metabolism of Microcystis aeruginosa were comprehensively investigated, as well as its biotransformation mechanism by algae. The results indicated that arbidol was toxic to Microcystis aeruginosa within 48 h, which decreased the cell density, chlorophyll-a, and ATP content. The activation of oxidative stress increased the levels of reactive oxygen species, which caused lipid peroxidation and membrane damage. Additionally, the synthesis and release of microcystins were promoted by arbidol. Fortunately, arbidol can be effectively removed by Microcystis aeruginosa mainly through biodegradation (50.5% at 48 h for 1.0 mg/L arbidol), whereas the roles of bioadsorption and bioaccumulation were limited. The biodegradation of arbidol was dominated by algal intracellular P450 enzymes via loss of thiophenol and oxidation, and a higher arbidol concentration facilitated the degradation rate. Interestingly, the toxicity of arbidol was reduced after algal biodegradation, and most of the degradation products exhibited lower toxicity than arbidol. This study revealed the environmental risks and transformation behavior of arbidol in algal bloom waters.


Asunto(s)
Indoles , Lagos , Microcystis , Sulfuros , Clorofila A , Antivirales/toxicidad , Microcistinas/toxicidad , Microcistinas/metabolismo
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 231-236, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38387927

RESUMEN

OBJECTIVE: To understand the serological characteristics of irregular antibodies in pregnant women and explore their clinical significance. METHODS: From January 2017 to March 2022, 151 471 pregnant women in Women and Children's Hospital of Chongqing Medical University were enrolled in this study, microcolumn gel card test was used for irregular antibody screening, and antibody specificity identification was further performed in some antibody-positive subjects. RESULTS: The positive rate of irregular antibody screening in the enrolled pregnant women was 0.91% (1 375/151 471), 0.23% (355/151 471) was detected in the first trimester, 0.05% (71/151 471) in the second trimester, and 0.63% (949/151 471) in the third trimester. The positive rate of irregular antibody screening in the third trimester was significantly higher than that in the first and second trimester, and a significant increase in the number of positive cases was found in the third trimester than that in the second trimester. The analysis of agglutination intensity of 1 375 irregular antibody screening positive results showed that the weakly positive agglutination intensity accounted for 50.11% (689/ 1 375), which was the highest, the suspicious positive was 18.69% (257/1 375), and the positive was 31.20% (429/1 375). The significant difference in distribution of agglutination intensity was not observed between the first trimester group and the second trimester group, however, in the third trimester, the proportion of suspicious positive and weakly positive was lower than the first trimester, while, the proportion of positive was higher than the first trimester, and the difference was statistically significant (P < 0.001). Among the irregular antibody screening positive pregnant women, the proportion of pregnant women with pregnancy number ≥ 2 was significantly higher than that with pregnancy ≤ 1. Among 60 pregnant women who underwent antibody identification, the distributions of the antibodies were as follows: Rh blood group system accounted for 23.33% (14/60), Lewis system 43.33% (26/60), Kidd system 3.33% (2/60), MNS system 16.67% (10/60), P1PK system 1.67% (1/60), autoantibodies 1.67% (1/60), and 4 cases was unable to identify (6.67%, 4/60). Among specific antibodies, the anti-Lea was the most common (30.00%), followed by anti-E (16.67%) and anti-M (16.67%). CONCLUSION: The differences of irregular antibody serological characteristics exist in pregnant women from different regions with different genetic backgrounds, understanding the characteristics of irregular antibody in local pregnant women is of great significance for ensuring transfusion safety in pregnant women and preventing hemolytic disease of newborn.


Asunto(s)
Antígenos de Grupos Sanguíneos , Mujeres Embarazadas , Recién Nacido , Niño , Femenino , Embarazo , Humanos , Relevancia Clínica , Transfusión Sanguínea , Autoanticuerpos
20.
Environ Pollut ; 344: 123308, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185352

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) have gained global concern due to their detrimental effects on marine organisms. We investigated the effects of 80 nm polystyrene (PS) NPs on life history traits, ingestion, and dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) production in the rotifer Brachionus plicatilis. Fluorescently labeled 80 nm PS NPs were ingested by the rotifer B. plicatilis and accumulated in the digestive tract. The lethal rates of B. plicatilis exposed to NPs were dose-dependent. High concentrations of PS NPs exposure had negative effects on developmental duration, leading to prolonged embryonic development and pre-reproductive periods, shortened reproductive period, post-reproductive period, and lifespan in B. plicatilis. High concentrations of PS NPs exposure inhibited life table demographic parameters such as age-specific survivorship and fecundity, generation time, net reproductive rate, and life expectancy. Consequently, the population of B. plicatilis was adversely impacted. Furthermore, exposure to PS NPs resulted in a reduced ingestion rate in B. plicatilis, as well as a decreased in DMS, particulate DMSP (DMSPp) concentration, and DMSP lyase activity (DLA), which exhibited a dose-response relationship. B. plicatilis grazing promoted DLA and therefore increased DMS production. PS NPs exposure caused a decline in the increased DMS induced by rotifer grazing. Our results help to understand the ecotoxicity of NPs on rotifer and their impact on the biogeochemical cycle of dimethylated sulfur compounds.


Asunto(s)
Rasgos de la Historia de Vida , Rotíferos , Sulfuros , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos/farmacología , Poliestirenos/farmacología , Ingestión de Alimentos , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...